405nm 5mW VIOLET PURPLE
BLUE BEAM LASER PEN
This is a long page with at least 26 images on it; dial-up users please allow for plenty of load time.
Somebody set up us the bomb.

405nm 5mW Violet Purple Blue Beam Laser Pen, retail $10.66
Manufactured by: (Unknown)
Last updated 01-30-11





(In reference to the padded envelope I received from an Ebay seller at 5:23pm PST on 11-22-10):
{sung like the Foreigner song "Feels Like the First Time"}


The 405nm 5mW Violet Purple Blue Beam Laser Pen is a violet-emitting, directly-injected laser. That is, it produces violet laser radiation directly, without the need for messy, fragile nonlinear crystals like those green laser pointers and the amberish-yellow and blue ones as well. It uses two AAA cells -- the same power source used in most other "pen-style" laser pointers and laser modules.

It is advertised to output 5mW of laser radiation at ~405nm.
It actually measures 57.30mW at exactly 405.0nm!!!

It comes in a handsome brass body with a black finish and chrome colored bezel, tailcap, and pocket clip.


 SIZE



To get the laser to turn on, first be certain that there are a pair of AAA cells installed. If there isn't, then install them (see directly below), and THEN you can go irradiate something.

Aim the laser well-away from your face first. Press & hold down the button on the barrel for as long as you want or need the laser spot, and release pressure on the button to turn the laser back off.



To change the batteries in this violet laser , unscrew the laser near the center, gently place the upper portion onto the floor in front of the stairs leading to the basement, and kick it down those stairs so that the piss ants with full bladders will think it's something to eat, find it unpalatable, drag it to the queen, who just sniffs at it, uranates all over it, and instructs the worker ants to do the same...O WAIT!!! THAT'S THE GOOD PART!!! So just set it aside instead.

Tip the two used AAA cells out of the barrel and into your hand, and dispose of, recycle, or recharge them as you see fit.

Insert two new AAA cells into the barrel, flat-end (-) negative first. This is the opposite of how batteries are installed in most flashlights, so please pay attention to polarity here.

Screw the front portion of the tube back on, and be done with it.
Aren't you glad that you didn't kick that front piece into the basement with all of those hungry ants that really had to piddle now?

Unable to measure current use due to how this laser was constructed.



This is a self-contained laser , and not a flashlight meant to be carried around, thrashed, trashed, and abused - so I won't try to drown it in the toliet tank, bash it against a steel rod or against a concrete porch, let my mother's big dog's ghost or my sister's kitty cats piddle (uranate) on it, run over it with a 450lb Celebrity motorised wheelchair, stomp on it, use a small or medium ball peen hammer in order to bash it open to check it for candiosity, fire it from the cannoņata, drop it down the top of Mt. Erupto (I guess I've been watching the TV program "Viva Piņata" too much again - candiosity is usually checked with a laser-type device on a platform with a large readout (located at Piņata Central {aka. "Party Central"}), with a handheld wand that Langston Lickatoad uses, or with a pack-of-cards-sized device that Fergy Fudgehog uses; the cannoņata (also located at Piņata Central) is only used to shoot piņatas to piņata parties away from picturesque Piņata Island, and Mt. Erupto is an active volcano on Piņata Island), send it to the Daystrom Institute for additional analysis, or perform other indecencies on it that a flashlight might have to have performed on it. So this section of the web page will be ***SIGNIFICANTLY*** more bare than this section of the web page on a page about a flashlight.

This is a directly-injected laser though, who's active components are the inverter circuit, the laser diode, and the collimating lens. So it should withstand accidents better than a DPSS (diode pumped solid state) laser - the type of laser assembly found in yellow (593.5nm), green (532nm) and blue (473nm) laser pointers. These lasers have several additional components (crystals, filters, etc.) in the optical train, and you can knock them out of alignment by doing little more than looking at them the wrong way. And if any of these components are knocked out of whack, you'll no longer get your yellow, green, or blue laser beam.
Though you still do not want to intentionally drop your violet-emitting laser because it's a precision optical instrument.


There is no label on the product, and therefore no CDRH classification shown; eg. it does not read "Class IIIb" as it should. And it ***REALLY*** should, considering its high output power.
This (not having the proper labelling) is rather expected of a product of non-US origin; sometimes known as the "Hoo Phlung Pu" brand.

From somebody who knows their {vulgar slang term for caca; rhymes with "pit"} about lasers, comes this information:

More on 50-60 mW violet lasers: The spot is not safe to stare into from close distances. At 60 mW, assuming a perfectly diffuse-reflecting white wall and fully dilated pupil, the spot is at borderline between Class I and Class II at a little over 7 feet. This wavelength also has the extra ill effects of blue and a bit of the ill effects of UV.

Usually a yellowish dye that naturally exists in the lens of the eye significantly attenuates deep violet wavelengths. However, this is not completely reliable. You probably do not want to stare at the violet spot for more than a couple seconds from distances within a couple feet.

If the spot or your eyes keep moving, then things are OK.



Does this evaluation look an awful lot like the one I made for this laser?
Thought you'd say so.
That's because they're functionally, electrically, and physically identical, so I was able to use its web page as a template for this one.



Beam photograph of this laser on the test target at 12".
Beam image bloomed ***SIGNIFICANTLY***.
I deliberately photographed this in somewhat low daylight to help reduce image blooming!!!

That white & blue color does not really exist; the spot appears to be a very deep royal purple to the eye.
Digital cameras have a tough time at these wavelengths.

And yes, I know that the colors purple and violet are two different critters, but the phrase "royal violet" would not make very much sense; however, most everybody knows what "royal purple" looks like.
Purple is a mixture of red & blue; violet is a spectral color, encompassing wavelengths of ~390nm to ~410nm.

Measures a rather hefty 57.30mW on a Sper Scientific Pocket Laser Power Meter # 840011; using known-new Duracell AAA cells.



Beam photograph on a wall at ~10'.
Again, that white & blue color does not really exist.


Those colored graphics that you *MAY* (or *MAY NOT*) see toward the left are my "Viva Piņata" posters, and that clock on the right that looks like a gigantic wristwatch is my Infinity Optics Clock.
You may also be able to see two of my SpongeBob SquarePants plush (Squidward Tentacles & Patrick Star) and a Digimon plush (Greymon).


Spectrographic analysis
Spectrographic analysis of the Blu-ray laser diode in this product.
Wavelength appears to be ~405nm, which is within specification for the type of laser diode used in this laser.


Spectrographic analysis
Same as above; but spectrometer's response narrowed to a band between 390nm and 410nm.
This shows that the wavelength is *EXACTLY* 405.0nm.


Spectrographic analysis
Spectrographic analysis of the fluorescence of a uranated* glass marble when irradiated with this laser.


Spectrographic analysis
Spectrographic analysis of fluorescence of the 2009 NIA Commemorative Insulator in Uranated* Glass when irradiated with this laser.

*"Uranated" - infused with an oxide anion of uranium, *NOT* piddled (peed) on.
Commonly referred to as "Vaseline glass" because it has
a distinct pale yellow-green color when not being irradiated.


Note spelling: "urAnated", not "urEnated","urInated",
"urOnated", "urUnated", or sometimes "urYnated".


Spectrographic analysis
Spectrographic analysis of fluorescence of the yellow-green parts of the remote control for the Tyco Gyromax R/C Vehicle when irradiated with this laser.

USB2000 spectrometer graciously donated by P.L.



ProMetric analysis
Beam cross-sectional analysis with beam widened (x-axis).



ProMetric analysis
Beam cross-sectional analysis with beam widened (y-axis).

These charts show the somewhat ovoid beam profile;
this is consistent with directly-injected diode lasers.

Images made using the ProMetric System by Radiant Imaging.





Video clip on YourTube showing what an airline pilot or copilot might see if you attempted to hose down the approaching aircraft with a laser pointer from a mile or two out.

Taken with a Canon Powershot G3 Digital Camera.

Three laser wavelengths were used here:
532nm green.
440nm royal blue.
405nm violet
(the person being irradiated would see this as a deep violet color; not bluish as this video indicates. This is because digital cameras have a tough go of it at wavelengths this short).

This clip is approximately 6.777566392340 megabytes (6,983,706 bytes) in length; dial-up users please be aware.
It will take no less than thirty three minutes to load at 48.0Kbps.




This clip is approximately 10.000084561256 megabytes (10,167,992 bytes) in length; dial-up users please be aware.
It will take no less than fifty minutes to load at 48.0Kbps.

Same thing as above; shot with the Polaroid x530 Digital Camera this time.








TEST NOTES:
Test unit was purchased on Ebay on 10-06-10 (or "06 Oct 2010" if you prefer), and was received at 5:23pm PST on 11-22-10 ("22 Nov 2010").

I have decided to rate this wonderful little laser four!!!
The only real reasons that it did not receive five stars is because the claimed power output and the measured power output vary so greatly (claimed at <5mW, measured at 57.30mW), and it isn't even labelled at all -- a rather severe no-no!!!





UPDATE 01-20-11:
I have given this laser to J.R. in Arizona USA (we were roommates at The Juneau Receiving Home from the late-1970s through the early-1980s and I hadn't heard from him until 12-17-10 {or "17 Dec. 2010" if you prefer}), so that dreadful "" icon will be apppended to its listings on this website, denoting the fact that I no longer have it at my disposal for additional comparisons or analyses.





PROS:
Color is very radiant & unusual for a handheld laser
Uses inexpensive and readily available batteries
The price is right!
Color is very radiant an unu...o wait, I said that already!!!


CONS:
Just the usual suspects for laser modules/pointers - nothing that affects rating...actually, there is one little thing: it is advertised as a 5mW laser, but outputs over 57mW of laser radiation.
That's what lopped most of that last star off.


    MANUFACTURER: Unknown
    PRODUCT TYPE: Violet-emitting laser
    LAMP TYPE: Sony Blu-ray laser diode
    No. OF LAMPS: 1
    BEAM TYPE: Very narrow spot
    SWITCH TYPE: Momentary on/off button on barrel
    CASE MATERIAL: Brass
    BEZEL: Metal; laser & lens recessed into its end
    BATTERY: 1x AAA cell
    CURRENT CONSUMPTION: Unknown/unable to measure
    WATER- AND URANATION-RESISTANT: Light splatter-resistant at maximum
    SUBMERSIBLE: For Christ sakes NO!!!
    ACCESSORIES: None
    COUNTRY OF MANUFACTURE: China
    WARRANTY: Unknown/not stated

    PRODUCT RATING:

    Star Rating





405nm 5mW Violet Purple Blue Beam Laser Pen *







Do you manufacture or sell an LED flashlight, task light, utility light, or module of some kind? Want to see it tested by a real person, under real working conditions? Do you then want to see how your light did? If you have a sample available for this type of real-world, real-time testing, please contact me at bdf1111@yahoo.com.

Please visit this web page for contact information.

Unsolicited flashlights, LEDs, and other products appearing in the mail are welcome, and it will automatically be assumed that you sent it in order to have it tested and evaluated for this site.
Be sure to include contact info or your company website's URL so visitors here will know where to purchase your product.



WHITE 5500-6500K InGaN+phosphor 
ULTRAVIOLET 370-390nm GaN 
BLUE 430nm GaN+SiC
BLUE 450 and 473nm InGaN
BLUE Silicon Carbide
TURQUOISE 495-505nm InGaN
GREEN 525nm InGaN 
YELLOW-GREEN 555-575mn GaAsP & related
YELLOW 585-595nm
AMBER 595-605nm
ORANGE 605-620nm
ORANGISH-RED 620-635nm
RED 640-700nm
INFRARED 700-1300nm
True RGB Full Color LED
Spider (Pirrahna) LEDs
SMD LEDs
True violet (400-418nm) LEDs
Agilent Barracuda & Prometheus LEDs
Oddball & Miscellaneous LEDs
Programmable RGB LED modules / fixtures
Where to buy these LEDs 
Links to other LED-related websites
The World's First Virtual LED Museum
Legal horse puckey, etc.
RETURN TO OPENING/MAIN PAGE
LEDSaurus (on-site LED Mini Mart)



This page is a frame from a website.
If you arrived on this page through an outside link,you can get the "full meal deal" by clicking here.